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EFFECT OF FRACTURE RATE ON THE DYNAMICS OF THE INTERACTION 

OF AN IMPACT LOAD PULSE WITH THE SURFACE OF A SOLID 

A. V. Utkin UDC 539.593 

Studies of cleavage phenomena during the reflection of shock waves from the free surface 
of a body [i, 2] provide unique information about the strength properties of materials in 
the submicrosecond range. Under these conditions, however, the time to fracture is com- 
parable with the loading time and as a result the experimental values of the cleavage strength 
of material, which is not a comprehensive characteristic, are not unique; it is thus neces- 
sary to speak of the breaking strength as a function of the strain rate as well as other state 
parameters. A number of papers (see, e.g., [3, 4]) have developed a semi-empirical continuum- 
kinetic model of fracture, which gives an acceptable description of particular cases when used 
in problems of mathematical simulation of shock-wave phenomena. At the same time, information 
must be obtained about the kinetic fracture laws directly from analysis of experimental data. 
Such information in implicit form is contained by the velocity profiles of the surface of 
the test specimen [5]. The fracture of the material after reflection of a shock wave from 
the free surface of a body and the attendant relaxation of tensile stresses give rise to a 
compression wave, a so-called cleavage pulse. Clearly, in the case of instantaneous fracture 
the cleavage pulse should have the steepest leading edge and the largest amplitude. It is 
intuitively clear that a longer time to fracture reduces the slope of the cleavage pulse. A 
prolonged decrease in velocity against the background of its damped oscillations has been 
also observed in experiments. 

Our aim was to analyze wave processes in a fracturing medium upon reflection of a com- 
pression pulse from the free surface and to study the possibility of obtaining data on the 
fracture rate directly from measurements of the velocity profiles of the surface of the 
specimen. 

Formulation and Solution of the Problem. In the acoustic approximation we consider the 
evolution of a triangular compression pulse after its reflection from the free surface of a 
specimen, which develops at negative pressure. We assume that fracture begins when the tensile 
stresses reach the critical value Pc and is characterized by a specific pore volume Vp. The 
total specific volume of the medium is equal to the sum of Vp and the specific volume of the 
solid compoflent Vs: v = Vp + v s . We use the simplest fracture kinetics: the rate of change 

of Vp depends linearly on the pressure P and is zero if~P > 0 and v D = 0. The system of 
hydrodynamic equations, closed by the kinetic equation and the equation of state, has the 
form (in Lagrange's variables) 

Ov 1 au _ ( } ,Ou  __i OP __~_Oup' P :~ ,  P=Po zc2o(l/,o-vm-v~,~ ' ( 1 )  
at ~o~h T + , o ~  - = 0 ,  2 D0CoT ~ 

where  t i s  t h e  t i m e ;  h i s  t h e  L a g r a n g e  c o o r d i n a t e ;  u i s  t h e  mass v e l o c i t y ;  P0 and c o a r e  t h e  
i n i t i a l  d e n s i t y  and t h e  v e l o c i t y  o f  sound ;  and ~ i s  t h e  c h a r a c t e r i s t i c  r e l a x a t i o n  t i m e  o f  
t h e  f r a c t u r e  p r o c e s s ,  c o r r e s p o n d i n g  t o  t h e  b u l k  v i s c o s i t y  ~ = 90c02z~.  I n  t h e  e q u a t i o n  o f  

state the pressure i s  determined from the solid component v s = v - Vp. 

Figure 1 shows the flow pattern in the t-h plane. In region 1 the incident wave and 
the reflected wave do not interact and the dependence of the mass velocity and pressure on 
the coordinates and time corresponds to a triangular compression pulse: 
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u(h ,  t) = u o -  k ( c o t - -  h) ,  P ( h ,  t) = 9oCoU(h, t). (2)  

Here u 0 is the maximum mass velocity; and k is a constant characterizing the pulse length 
2h0: 

h o = - - % %  = - - u o l ( 2 k  ). 

In region 3 the incident wave and the wave reflected from the free surface h = 0 interact, 
causing tensile stresses. The absolute value of these stresses is below the critical value, 
whereby the medium does not fracture and the solution satisfying the free-surface condition 
is written as 

.(h,  t) : 2(Uo - keot), P(h, t) = 2+,ocokh. (3)  

At h = h c and  T = ~c = - h c / c o  t h e  p r e s s u r e  r e a c h e s  t h e  t h r e s h o l d  Pc a nd  t h e  m a t e r i a l  
fractures in region 2. The flow here is determined by the solution of system (i) with bomd- 
ary conditions at h = h c and h +-~ and initial conditions on the C_ characteristic, on which 
the functions (apart from Vp) undergo a jump. Because of the stress relaxation during frac- 
ture the pressure along the C_ characteristic may (for certain values of Tc) be above Pc and 

the fracture region has a more complicated zone structure than in Fig~ i. To simplify the 
calculations, therefore, we assume that once the fracture threshold has been reached in sec- 
tion h c the medium "becomes weaker" at lower values of h. From the solution obtained below 
we shall see under what conditions and how the fracture threshold should change at h j h c 
for the fracture region to have the shape shown in Fig. i. 

Let us find the solution in region 2. For this purpose we eliminate Vp and v 

from (i) and change the independent variables: T = t + h/c0, x = h. The fracture zone is 
mapped onto part of the fourth quadrant of the T-x plane: T > 0, x ! Xc. The Laplace trans- 
form in T takes the resulting system of two equations in partTal derivatives into a system 
of ordinary differential equations. 

c0+$ ( i) >+. % ,-n + + s + ~o:~ -_ (t, (x, o) + ,,)o%t+ (x, t))L 
[ 0% 

d~ t 
~ -  + --+ P + Po~ = - -  (P (x, o) + poeoU (z, 0)) 

c 0 c o 

(4) 

(s is the Laplace variable and u and ~ are the Laplace transforms of the mass velocity and 
pressure). The initial values of u and P as T + +0, which enter as a combination that is a 
Riemann J+-invariant, are transferred to the right side of (4) [6]. It is not necessary, 
therefore, to determine u and P separately to the right of the jump on the C_ characteristic: 
they are found directly from the solution of the system. The value of the invariant is found 
from the continuity condition at the jump on the basis of its value in region I. By (2) we 
obtain 
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p(x, O) + 9oCoU(X, 0) = 29oCo(Uo + 2kx) O(x - Xo), 

w h e r e  0 ( x )  i s  t h e  H e a v i s i d e  u n i t  f u n c t i o n ;  a n d  x o = h o.  

T h e  g e n e r a l  s o l u t i o n  i n  t h e  f r a c t u r e  r e g i o n ,  w h i c h  i s  b o u n d e d  a s  x + - ~ ,  h a s  t h e  f o r m  

~) (x, s) == s~ o L--/_~-ot~9~ - + -Zs exp (~,i (x - -  x,o) ) - -  

I e i (p (~ ,~(X--Xo)) ) ]O(x- -xo) -~-a(~xp( )~ lX) ,  k 2 

2k [, i t 
u (x, s) = - 7  [2 (x - -  z o + Co'C~) - -  .--- exp ()~1 (x - -  xo) ) - -  - -  

AI ~'2 
A --a X 0 (x - -  xo) - -  exp (~lx), 

PoCo s 

J~i,2 = -- --• -- A = ~fS(S+ I/~.). 
c 0 '2 0 

exp (~: (x - x0))] • (5) 

Constant a is found from the continuity condition of the Riemann J -invariant at x = x c. The 
complication is that in regions 3', 4', etc. (see Fig. i) the functional dependence of J_ on 
the coordinates and the time is different and in each subsequent region the invariant is 
determined only after the solution has been found in the previous region. Let us find the 
value of a in the interval 0 J T ~ 2T~. In region 3, by (3) we obtain 

J -  = --20o%[Uo - -  k(cot + h)] = --2poco(u o - -  kcoT). ( 6 )  

Since the J_-invariant persists along the C characteristics, Eq. (6) gives its value in 
region 3'. Applying the Laplace transformation to (6) and setting the resulting expression 
equal to the 3_-invariant in the fracture region, which follows from (5) for x = x c, we find a: 

a = ~ 2xc, + 4Co'r u + " 7  + ~ exp ('~1 (Xc - -  Xo) ) - -  
( 7 )  

~' exp(~2(Xc_Xc)))]exp(_)hXc).  

E q u a t i o n s  ( 5 )  a n d  ( 7 )  d e t e r m i n e  t h e  s o l u t i o n  i n  t h e  f r a c t u r e  r e g i o n  f o r  0 < T < 2~ c i n  
L a p l a c e  t r a n s f o r m s .  Some r e s u l t s  c a n  b e  o b t a i n e d  w i t h o u t  g o i n g  t o  t h e  o r i g i n a l s .  F o r  i n -  
s t a n c e ,  u s i n g  t h e  f a m i l i a r  p r o p e r t y  o f  t h e  L a p l a c e  t r a n s f o r m a t i o n  [ 7 ]  limsF(s)----F(O), we f i n d  

the value of the pressure to the right of the jump along the C_ characteristic 

P = - -  4kPoc~r~ i -- exp \ 2c0---- ~ / ]  \ 2c0T ~ ] -- 

_ ~c (h--  hcl ] 
- - ( 1  2 -~ )exp  ~ 2c0T~ ] j .  

(8) 

From (8) it follows that when fracture has begun at point h c, x c the pressure along the C_ 
characteristic continues to decrease if T u < ~c/2 and conversely, begins to increase if TD > 
~c/2 tending to --4kp0c~T ~ in both cases (we consider the most interesting case, h ! h0). 

The pressure remains constant at Pc when ~ = ~c/2. The above assumption about the 
"weakening" of the material is important at a low fracture toughness, when T~ < ~c/2 and 

the solution obtained remains valid if we assume that the fracture threshold at h < h c 

drops to 4kp0c~x ~ in absolute value. 

Let us find the free surface at 2~ c ~ 4T c. To do this we exploit the circumstance that 
the Riemann J+-invariant persists along the C+ characteristics. We find is value on the free 
surface is p0c0u(0, t) and at h = h c from the solution obtained in the fracture region: 

7 +  (xc, s) 4k , 4kX1 2kco~. 1 8k 
= -7- (x c - -  x0) ~- ~ (Xc + 2C0T~) + ~ + ~ exp ()~2(Xc - -  xo) ). 

Po% Co% 2 
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Using the familiar inversion formulas and the properties of the Laplace transformation 
[7, 8], we obtain an expression for the velocity of the free surface at 2r c ~ t ~ 4~c: 

r~ (0, t / =  I - -  t [i -~ (l - -  26~) F 1 (z) - -  6~F 2 (z) - -  26~F 3 (z)], 
2u0 -~0 

Fl(z ) = exp (--z) [/0(z) -~/1(z)]  - -  l,  

F~(z) = exp (--z) [2Z(Io(Z ) + II(z)) -t- I0(z)] - -  z - -  1, 
Z-- ZC. 

~ z - ~ o - ~ :  I ~ ( z - z ~ - D  ~,~ 
( 9 )  

~" - z ~ )  d~ o (~ - 2z~.), 

t -- 2~ c X c -  x____~0 ~o -- Tc ~o TtL 
z - -  2 z ~ '  Zc ~ 2c0~ ~ ~ - - ' 2 ~  50 ~--~c '  ~ = - - ~ c  

( I  0 and  I x a r e  m o d i f i e d  B e s s e l  f u n c t i o n s  o f  o r d e r  0 and  1 ) .  We n o t e  t h a t  f u n c t i o n  F~ i s  n o n -  
z e r o  o n l y  when t h e  l o a d  p u l s e  l e n g t h  i s  l e s s  t h a n  4z c .  U s u a l l y ,  f o r  l o w - s t r e n g t h  m e d i a ,  t h i s  
c o n d i t i o n  i s  n o t  s a t i s f i e d  and t h e n  Eq. ( 9 )  s i m p l i f i e s  c o n s i d e r a b l y  s i n c e  u ( 0 ,  t )  i s  e x p r e s s e d  
e x p l i c i t l y  i n  t e r m s  o f  m o d i f i e d  B e s s e l  f u n c t i o n s .  

H a v i n g  d e t e r m i n e d  t h e  v e l o c i t y  o f  t h e  f r e e  s u r f a c e  i n  r e g i o n  4 ( s e e  F i g .  1 ) ,  we can  f i n d  
t h e  v a l u e  o f  t h e  J _ - i n v a r i a n t  a n d ,  r e p e a t i n g  t h e  p r e v i o u s  s t e p s ,  f i n d  t h e  s o l u t i o n  i n  t h e  
f r a c t u r e  r e g i o n  a t  2~ c < T < 4~c .  O m i t t i n g  t h e  i n t e r m e d i a t e  m a n i p u l a t i o n s ,  we g i v e  t h e  e x -  
p r e s s i o n  f o r  t h e  v e l o c i t y  o f  t h e  f r e e  s u r f a c e  i n  t h e  i n t e r v a l  2~ c < t < 6~c :  

zL(o, t l = t _ ~  I + ( 1 - - 2 5 ~ ) F ~ ( z ) - - 6 ~ F  2 ( z ) +  5~F 2 z - -  -- 
2it ~ 

@l(z) = i - -  2 exp (--z) [I0(z) + I~(z) --/~(z)/z],  
~2(z) = z ~ 4 - -  4z exp (--z) [I0(z) ~ Ii(z)] - -  2 exp ( - - z ) •  

• [210(z) + Ii(z)1. 

I n  ( 1 0 )  t h e  p u l s e  l e n g t h  2~0 i s  a s sumed  t o  be  g r e a t e r  t h a n  6~ c .  O t h e r w i s e  Fs and  t h e  
f u n c t i o n  ~3 o f  s i m i l a r  s t r u c t u r e .  The c o n s t r u c t i o n  o f  t h e  s o l u t i o n  can  be  c o n t i n u e d  f o r  
l o n g e r  t i m e s .  Wi th  e a c h  s t e p ,  h o w e v e r ,  t h i s  becomes  more  cumber some .  M o r e o v e r ,  i t  i s  t h e  
f i r s t  s e v e r a l  o s c i l l a t i o n s  o f  t h e  v e l o c i t y ,  d e s c r i b e d  by  Eq. ( 1 0 ) ,  t h a t  a r e  o f  i n t e r e s t  i n  
p r a c t i c e .  

A n a l y s i s  o f  t h e  S o l u t i o n .  L e t  us  e x a m i n e  t h e  d e p e n d e n c e  o f  t h e  v e l o c i t y  o f  t h e  f r e e  s u r -  
f a c e  on t h e  r e l a x a t i o n  t i m e  o f  t h e  f r a c t u r e  p r o c e s s  a t  a f i n i t e  Pc" F i r s t  we c o n s i d e r  t h e  
l i m i t i n g  c a s e s .  As ~ + ~ t h e  a r g u m e n t s  o f  F i and ~ i  t e n d  t o  z e r o .  E x p a n d i n g  t h e  m o d i f i e d  
f u n c t i o n s  f o r  s m a l l  z [ 8 ] ,  we o b t a i n  u ( 0 ,  t )  = 2 ( u  0 - k c 0 t )  f o r  2z c ! t ! 6 ~ c ,  w h i c h  a c c o r d s  
w i t h  t h e  s o l u t i o n  ( 2 )  and c o r r e s p o n d s  t o  t h e  a b s e n c e  o f  f r a c t u r e .  I n  t h e  s e c o n d  l i m i t i n g  
case (~ § O) we have 

u(0, t) ---2 [u o -  kco(t - -  2~c) ] 

for _')T c: __~ t __~ 4~.~, 

u ( 0 ,  t) = 2 [u0 - -  kco(t  - -  4~c)  ] 

fo r /~r c<~ t - ~  8T c, 

as should be expected for media that fracture without resistance after the tensile stresses 
reach the critical value. 

Figure i showed the velocity profiles plotted from Eq. (i0) for 5~ = 0; 0.05, 0.2, 
0.5, I, and (lines 1-6) and 60 = 5. Tabulated values of the Bessel functions were taken 
from the handbook [8]. Since the velocity is inversely proportional to the 6o, a change in 
the pulse length reduces to just a change in scale along the abscissa axis and in this sense 
the graph in Fig. 2 is universal. The most characteristic feature-of the solution is a cri- 
tical value 6~*, which separates two different flow regimes: at 6D < 6~* the velocity of the 
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free surface oscillate, i,e., fracture manifests itself in a cleavage pulse at the profile 
u(0, t); at 6~ > 6~* the monotonic decrease in velocity continuous after the onset of frac- 
ture. Let us-determine the critical value of the fracture toughness, for which purpose we 
find derivative of the velocity with respect to time for 2m c < t ~ 4mc: 

d(.(o,t)]= [ ( ,  ,, ] (I1) 

In particular, at t = 2m c + 0 (the derivative has a jump at t = 2m c) 

 --ct % / 2.,, ( i2)  

The crit$cal value of ~*,, determined from the condition for the derivative to become 
zero at t = 2m c + 0, is 0.5. Equation (12) is sufficiently general, does not depend on the 
specific model of fracture and is determined only by the initial pore growth rate, which we 
denote by ~p. It follows from (i) that ~p = 2k/(p0~) at P = Pc- Also introducing the growth 

rate ~ of the specific volume in the unloaded part of the decreasing pulse (# is constant and 
equal to k/p0), we recast Eq. (12) in the form 

( ) d u (0,2Tc) l 
dt 2% = ~ o  - - 4  . (13) 

This suggests that a cleavage pulse at the velocity profile of the free surface is observed 
only when the maximum pore growth rate is more than four times the growth rate of the specific 
volume in the decreasing load pulse. Formula (13) also provides a way of finding the initial 
fracture rate from the slope of the leading edge of the cleavage pulse. 

We determine the position of t m and the amplitude of the first velocity maximum Um, 
equating the derivative (II) to zero. At a fracture toughness close to the critical value 
(I - ~/6~ << i), we obtain 

As 6~-~0 

t . , 1 2 T c ~ ' 2 - - ~ $ ~ , 6 ~ ,  U./2Uo ~ ! (1,'6o) [ l (1 6<< 6~<)-/2]. 

t~/2Tp ~ t + (5g/2~)~/3, u ~ / 2 u  o ~ i - -  (3/5o)(5~,'2~) ~/~, 

i.e., as 6~ decreases from 6~ to 0 the velocity maximum increases monotonically, first shifting 

to the right, and then again approaching t = 2 m e. The maximum tm/fm c ~ 1.31 is reached at 6 c = 
0.18 sec, which corresponds to the velocity maximum Um/fU 0 = 1 - 0.80/60. The dependence shown 

in Fig. 2 for 6D = 0.2 is close to this nature of the motion. In contrast to Eq. (13) all of 
the results pertaining to the location and amplitude of the velocity maximum are intimately 
bound up with the specific model of fracture and information about the shape of the cleavage 
pulse can be used to determine the characteristic relaxation time in Eq. (i). 

Interesting results also follow from analysis of the velocity profile of the secondary 
circulation in the cleavage plate: 4m c ! t _< 6T c. First of all, it is easily ascertained 
that the velocity given by Eq. (i0), which is continuous along with its first derivative at 
t = 4Tc, and the second minimum when it exists, is observed at t is slightly larger than 4mc: 
t/4m c = 1 + 2~, ~ § 0. We also see from Fig. 2 that there is a second critical value 6"*, 

, 
which is characterized by the fact that a cleavage pulse is observed in the interval 6~ > 

~ > ~ , but further on the velocity decreases without characteristic minima and maxima: 

5~ ~ = 0.13. 

Thus far we have studied the velocity of the free surface. Information about the pres- 
sure distribution in the fracture region is important for analysis of cleavage phenomena. For 
simplicity we study only part of this region (0 < T < 2Tc), where the solution is given by 
Eqs. (5) and (7). We shall show that at small ~D the pressure is virtually constant in the 

fracture region, for which we find the partial derivative of P with respect to T. This is 
done most simply at T = +0, by applying the Laplace transform, which was used in the deriva- 
tion of formula (8). We can easily show that in this case 
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oP kP~ exp ~ - -  zc 

i.e., the derivative is exponentially small. In the approximation under consideration, there- 
fore, the pressure is constant and is equal to the value behind the jump, which is given by 
~q. (8) :  

p ~  ~ (14) 
- -  4kpocG~ ~. 

Near the cleavage plane the nature of the pressure variation is different. Let us examine 
the details of P at h = h c - 0. It is easy to invert the Laplace transform and obtain an 
explicit expression for the pressure 

P(h  c, t) = Pc.(l - -  6~,g @ (l - -  26~)F,(g) - -  6,f2(g)), 

k - -  <:  t_~ 3~cand ~o - -  > ~,c, 9T Y = (t - -  ~c)/2~, 
(15) 

from which, e.g., it follows that the derivative of the pressure is positive in the time inter- 
val under study at 6~ <_ 6~, i.e., the pressure in the cleavage plane increases with time, reach- 

ing a maximum at t = 3~ c. At 6~ <_ 0.ii this maximum is positive and its amplitude at first 

grows with decreasing fracture toughness to 0.06 Pc at 6M -~ 0.02 and then falls to zero. The 

time at which the pressure in the cleavage plane changes sign is t - - ~ c ( 2  -~-1.5 ]/-~--~ I- 9 ~ - 2 0  ) 

Let us consider the porosity distribution in the fracture region. In the approximation 
of small values of z~, when the pressure is practically constant and is determined by (14), we 
obtain 

L~(h, t) _____ (~k,:po)(t ~ h/c0), ( 1 6 )  

i . e . ,  t h e  law o f  p o r e  g r o w t h  i s  i n d e p e n d e n t  o f  t h e  r e l a x a t i o n  t i m e  and can  be f o u n d  d i r e c t l y  
f r o m  a n a l y s i s  o f  f l o w  i n  a medium t h a t  f r a c t u r e s  w i t h o u t  r e s i s t a n c e .  D e v i a t i o n s  f r o m  ( 1 6 )  
a r e  o b s e r v e d  o n l y  n e a r  t h e  c l e a v a g e  p l a n e .  At h = h c - 0 ( l i k e  t h e  p r e s s u r e ,  Vp jumps  i n  t h e  
s e c t i o n  h c )  t h e  d e p e n d e n c e  o f  p o r o s i t y  on t i m e  f o l l o w s  d i r e c t l y  f r o m  ( 1 5 ) :  

9 ( h o ,  t) = ( 4 1 ~ / p o ) I v  - 8,,v,<2 + ( l  - 28~,)Y,,(v) - -  

-- 6~F4(g) 1, 

F4(y) = zj exp ( - -y ) [ [o (Y)  -~- / l (g) /3  -}- (4Y;3)(Zo(Y) 
+ h(v)) ] - f;2 - ~ 

( 1 7 )  

The maximum specific pore volume is reached near the cleavage plane and at ~c ! t ! 3~ c can 
be found from (17). 

In the general case solving for the pressure and specific pore volume is a rather labo- 
rious process. For the sake of illustrating the conclusions, therefore, we carried out a 
numerical simulation of the system of gas-dynamic equations (i) by the method of characteris- 
tics [9], splitting them according to the physical processes. The coordinate distributions 
of the pressure and the specific pore volume at 6 o = 5 and 6~ = 0.05 are given in Fig. 3. 
The numbers indicate the time (in microseconds) from the arrival of the shock wave at the 
free surface (Zc = 2/3 ~sec) and the dashed lines represent the P and vD curves, plotted 
from Eqs. (14) and (16) at t = 3 Dsec. The approximations (14) and (16)~rather accurately 
give the maximum tensile stresses in the fracture zone and indicate the linear nature of 
the growth of the specific pore volume as a function of time and coordinate. We also note 
that at t = 2 ~sec the pressure at h = h c - 0 is positive and agrees with calculation from 
Eq. (15). 

The analysis has thus far been conducted on the assumption that the fracture threshold 
Pc is finite. Let us consider the limiting case Pc = 0, which corresponds to thresholdless 
fracture of a medium. The passage to the limit directly in (I0) obviously does not solve the 
problem posed, since regions 3, 4, ... constrict to a point and their number in the fixed 
interval of time tends to infinity. At the same time, the general solution (5) remains valid 
and the constant a is determined from the condition P = 0 at x = 0. The velocity and pres- 
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sure fields are described by simpler expressions than at a finite Pc. 
velocity of the free surface at t ! 2T0 has the form 

In particular, the 

2 It 0 TO , 

The velocity profiles at ~p/T 0 = 0.01; 0.i; I; and ~ (lines i-4) in Fig. 4 were plotted 
from Eq. (18) in coordinates u(0, t)/2u 0 - t/2~ 0. The velocity u(0, t) + 2u 0 as TU § 0, 
as it should for media with no strength. In the second limiting case (T~ + ~) the velocity 
u(0, t) = 2u 0 -- 2kc0t, i.e., the specimen does not fracture. At t § 0 the dependence 
u(0, t) pertains to the velocity profile that would be observed in the absence of fracture. 
This makes it impossible in principle to determine the fracture threshold when it is small 
and no cleavage pulse is recorded on the experimental profile. 

In conclusion, we note that all of the flow regimes obtained within the framework of the 
model are observed in practice. Indeed, the solution (10) for 6D > 6~ ̂ corresponds to the 
well-known nature of the cleavage fracture of many structural materials [2]. The case 5~ < 
6 < 6*, when only the first cleavage pulse is recorded distinctly, corresponds to the behavr P P 
ior of highly extended elastomers. For example. Weirick [i0], who studied cleavage in 
simulants of solid propellant, whose free-surface velocity profiles showed only the first 
cleavage pulse with a subsequent monotonic drop. Kamykov et al. [ii] were unable to record 
a cleavage pulse in experiments with rubber. A similar result was obtained independently in 
[12]. The model of thresholdless fracture (18) can be used to describe these experiments. 

In summary, within the framework of acoustics an analytical expression has been derived 
for the velocity of a free surface during plastic fracture of a material. Critical values 
at which the flow regime changes have been found. A method not linked with any specific model 
of fracture is proposed for determining the initial growth rate of the specific pore volume 
from the slope of the leading edge of the cleavage pulse. 
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ONE-DIMENSIONAL PROJECTION OF A LIQUID SHELL BY AN EXPLOSIVE CHARGE 

V. K. Kedrinskii and N. N. Chernobaev UDC 532.528 

Introduction. The problem considered here is associated with the cavitational rupture 
of a liquid with a free surface under an explosive load. The concept of cavitational rupture 
is based on the fact that cleavages arise in cavitating liquids behind the leading edge 
of intense rarefaction waves in underwater explosions at shallow depths [i]. Detailed experi- 
mental analysis of the nature and dynamics of cavitation effects has shown that the rupture 
process has distinctive features and has a number of stages: a) unrestricted growth (a neces- 
sary condition) of cavitation nuclei up to the "bulk" bubble density, corresponding to a bulk 
concentration of 0.5-0.75; b) formation of foam-type structures and their breakup into frag- 
ments, i.e., cleavages; c) the transformation of the cavitating cleavages into a drop struc- 
ture (structure of a splash dome on the free surface [i]). 

Under an explosive load a real liquid, containing microinhomogeneities as cavitation 
nuclei being in essence a two-phase medium for rarefraction waves, is transformed into a gas- 
drop state during rupture. This process can be defined as the inversion of the two-phase 
nature of the medium and is a fundamental problem of explosion hydrodynamics, including a 
number of independent areas. One of them deals with the mechanism of the transformation of 
a foam structure into a drop structure. This is a sort of relaxation process, which calls 
for a detailed study. Getz and Kedrinskii [2] attempted to eliminate it in order to construct 
a model and analyze the dispersal of close packed drops and also proposed a model of instan- 
taneous inversion of a cavitating liquid into a drop structure. 

Another area involves numerical analysis of the parameters and structure of a cavitating 
liquid within the framework of the model of instantaneous relaxation of motion in the cavita- 
tion zone, making it possible to consider the dynamics of the zone up to high bulk concentra- 
tions [3]. As an example of this, we consider the problem of explosive projection of a liquid 
shell in the one-dimensional formulation. 

Formulation of the Problem. A spherical explosive charge of initial radius r 0 lies at 
the center of a spherical liquid shell of radius r I. After initiation of the charge at the 
center a detonation wave reaches the charge-shell contact boundary at time t = 0. The gas- 
kinetic flow formed at t > 0 is calculated for a wide range of m = rm/r 0 (m = 2-10). 

As the working medium we consider a real liquid, which is construed as a liquid with a 
natural content of microinhomogeneities of the type of microbubbles of free gas [4]. Their 
concentration is s 0 < 10 -7 . The effect of the compressibility of the gas component at such 
low values of a0 is insignificant and so the propagation of shock waves in a real liquid is 
described well by the one-phase model. Taking this into account, we calculated the shock 
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